Homework 8

A. Chorin

March 24, 2005

Due March 30.

- 1. Show that if $\phi(\lambda)$ is the characteristic function of η , then $E[\eta^n] = (-i)^n (d^n/d\lambda^n)\phi(0)$ provided both sides of the equation make sense. Use this fact to show that if $\xi_i, i = 1, ..., n$ are Gaussian variables with means zero, NOT NECESSARILY INDEPENDENT, then $E[\xi_1\xi_2\cdots\xi_n] = \Sigma \Pi E[\xi_{i_k}\xi_{j_k}]$ for n even, and = 0 for n odd. In the right hand side i_k, j_k are 2 of the indices, the product is over a partition of the n indices into disjoint groups of 2, and the sum is over all such partitions (this is "Wick's theorem").
- 2. Consider the random differential equation dq(t)/dt = -ibq(t), q(0) = 1, where b is a random variable and $i = \sqrt{-1}$; define Q(t) = E[q(t)]. Show that $|Q(t)| \leq Q(0)$. Suppose the distribution of b is not known but you know the moments of b, i.e., you know $E[b^j]$ for all $j \leq N$. Solve the equation by iteration: $q_0 = 1, q_{j+1} = 1 ib \int_0^t q_j(s) ds <$ and then define $Q_j = E[q_j]$ for $j \leq N$, thus using the information you have. Show that however big N may be, as long as it is finite the approximation Q_j will violate the inequality $|Q(t)| \leq Q(0)$ for t large and any j > 1.
- 3. Continue the example of data assimilation from the notes: Suppose x(t) = x(0) is a scalar and you have observations $y_i = x_i + gW_i$, where g is a fixed constant. What is $\hat{x}_i = E[x_i|\bar{y}]$ for i > 1?
- 4. Show that for any given wide sense stationary stochastic process with a finite variance, there exists a gaussian process with the same covariance.
- 5. Consider the time-series prediction example in the notes, where the covariance function is Ca^T for T > 0. Suppose m = 2, i.e., you are trying to make a prediction two steps ahead of your last observation. What is the best you can do?
- 6. Consider the following functions R(T); which ones are the covariance functions of some stationary stochastic process, and why? $(T=t_2-t_1 \text{ as usual})$: $(i)R(T)=e^{-T^2}$; $(ii)R=Te^{-T^2}$; $(iii)R=e^{-T^2/2}(T^2-1)$, $(iv)R=e^{-T^2/2}(1-T^2)$.